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Abstract A newmultimodel ensemble (MME)method that uses a genetic algorithm (GA) is developed and
applied to the prediction of winter surface air temperature (SAT) and precipitation. The GA based on the
biological process of natural evolution is a nonlinear method which solves nonlinear optimization problems.
Hindcast data of winter SAT and precipitation from the six coupled general circulationmodels participating in
the seasonal MME prediction system of the Asia-Pacific Economic Conference Climate Center are used. Three
MME methods using GA (MME/GAs) are examined in comparison with a simple composite MME strategy
(MS0): MS1 which applies GA to single-model ensembles (SMEs), MS2 which applies GA to each ensemble
member and then performs a simple composite method for MME, and MS3 which applies GA to both
MME and SME. MS3 shows the highest predictability compared to MS0, MS1, and MS2 for both winter SAT
and precipitation. These results indicate that biases of ensemble members of each model and model
ensemble are more reduced with MS3 than with other MME/GAs andMS0. The predictability of the MME/GAs
shows a greater improvement than that of MS0, particularly in higher-latitude land areas. The reason for
the more improved increase of predictability over the land area, particularly in MS3, seems to be the fact that
GA is more efficient in finding an optimum solution in a complex region where nonlinear physical properties
are evident.

1. Introduction

The predictability of dynamic weather forecasts utilizing numerical models is limited by numerous factors such
as the uncertainty of initial conditions, systematic errors of the model, and imperfections of the numerical
schemes and parameterizations [Intergovernmental Panel on Climate Change (IPCC), 1996]. These factors result
in inaccuracies of weather and climate predictions, to which various improvements have been suggested. The
continuous efforts made to improve climate prediction have included the development of high-resolution
models and the refinement of various physical processes (such as carbon feedback and atmospheric chemical
reactions), in addition to various other approaches such as data assimilation and development of coupled
general circulation model (CGCM) [IPCC, 2007]. The ensemble method has also been used recently to improve
prediction probability by configuring numerous forecast members that are obtained by allowing perturbation
in initial conditions [Houtekamer and Derome, 1995; Stensrud et al., 2000], or by altering the initial times of
models [Lu et al., 2007], or by replacing physical processes [Stensrud et al., 1999]. Ensemble forecasting reduces
the uncertainty of prediction resulting from errors in initial condition. The forecast is known to average out
errors included in predictions obtained from different initial conditions [e.g., Kharin et al., 2001].

Recent recognition has acknowledged the effectiveness of the multimodel ensemble (MME), as this MME
improves seasonal predictability in comparison with the singlemodel (SM) by offsetting the systematic biases
and errors of each climate prediction model. MME combines ensemble prediction data from various climate
prediction models that have different dynamical and physical characteristics [Fraedrich and Smith, 1989;
Krishnamurti et al., 1999]. MME is currently used across the whole spectrum of forecast ranges, including
typhoon forecasts. Among the various linear methods used in MME [e.g., Kurihara et al., 1995; Palmer et al.,
2004], Kalnay and Ham [1989], Fritsch et al. [2000], andMin et al. [2014] have shown that the prediction using
the simple composite method (SCM), where the same weighting is given to each model, provides a better
predictability than individual predictions. Krishnamurti et al. [2000] have also shown that the MME prediction
using multiple linear regression (MLR) analysis has a higher predictability than the best SM prediction, since it
removes the systematic errors of the models.
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However, the conventional SCM is limited because it is useful only when all the SMs have similar and reason-
able performances [Kug et al., 2008b], and MLR is not an improvement over SCM because of its sampling
problems, particularly when using hindcast data from a relatively short time period [Kharin and Zwiers,
2002; Peng et al., 2002]. In addition, since MLR assumes a linear relationship between independent and
dependent variables, a nonlinear relationship often existing among the variables cannot be explained by
the method, even when the relationship between two variables is significant [Yuval and Hsieh, 2003].
Van den Dool and Rukhovets [1994] suggested that MME prediction can be improved by giving more weight
to the member having relatively higher predictability, instead of assigning the same weight to all the mem-
bers (if the predictability of each ensemble member is different). Yun et al. [2003, 2005] claimed that the use
of the singular value decomposition and empirical orthogonal functions analysis methods affords the
improved seasonal predictability compared to using SCM or SM when the MME strategy combines MLR.

The MME prediction strategy requires an applied nonlinear method because of the dynamical and physical
nonlinear properties of the climate system. Yun and krishnamurti [2002] and Park et al. [2005] used a nonlinear
MME strategy to reflect the chaotic characteristic of the atmosphere and introduced a multilayer perceptron
(MLP) of artificial neural network (ANN) for their strategy. However, MLP has the problem of stopping, even
when the cost function reaches the local minima during the learning process [Choi et al., 2000].

This study uses the genetic algorithm (GA) as an artificial intelligence (AI) technology which is capable of pro-
viding an efficient and flexible way to find an optimum solution in a complex searching space with a large
nonlinear property. As first designed by Holland [1975], GA is a probabilistic method that expresses a series
of processes for generating multiple descendants. It simulates evolution in an environment of “the survival
of the fittest” to preserve genes and to ensure survival of the algorithm. When a new group is formed, the
population observed as having high fitness in the previous group evolves into a new group using reproduc-
tion, crossover, andmutation of its genetic operators to accomplish an optimal solution that is then observed
as having high fitness [Charbonneau and Knapp, 1995]. Coulibaly [2004] indicated that downscaling using GA
is simpler and more efficient in the case of daily maximum andminimum temperatures than that using other
statistical methods, and Nasseri et al. [2008] attempted to optimize a scenario for the prediction of precipita-
tion using GA with ANN.

In this study, three MME experiments are designed to find a new MME method using GA and experimental
results for the boreal winter prediction are compared to those of SCM, the conventional method commonly
used in MME. Models participating in the Asia-Pacific Economic Conference Climate Center (APCC) multimo-
del seasonal prediction system are utilized for the analysis, and the target season and variables are the boreal
winter and the surface air temperature (SAT) and precipitation, respectively. The MME method using GA is
similar to the weighted composite method. However, the predictability can be different because GA
finds the optimal weights by considering both linear and nonlinear relationships between the members.
The experimental design is detailed in section 3.

2. Data and Method
2.1. Data

This study utilizes ensemble members of CGCMs produced from six institutions participating in the APCC
program for MME long-range prediction. Table 1 shows the main characteristics of the CGCMs. All models
have ensemblemembers to reduce the uncertainty in initial conditions, and hindcast sets of all models satisfy
the requirements for the Seasonal Prediction Model Intercomparison Project/Historical Forecast Project
(SMIP/HFP) and/or Coupled Model Intercomparison Project (CMIP).

Hindcast and forecast data of 1–3month lead times from the initial condition of November are used. The sea-
sonal mean SAT and precipitation from December, January, and February (DJF) are analyzed using the data of
each model. A split period totaling 27 years from 1983 to 2005 and from 2008 to 2011 is used. The years 2006
and 2007 are omitted from the data because all models have generated hindcast data for the common period
1983–2005 and forecast data for the common period 2008–2011. The National Centers for Environmental
Prediction and the National Center for Atmospheric Research (NCEP/NCAR) reanalysis 2 data are used for
the verification of 2m temperature [Kanamitsu et al., 2002]. For precipitation, monthly averaged data from
the Global Precipitation Climatology Project are utilized [Huffman et al., 1997].
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Observation and hindcast data are divided into mean (A) and perturbation (A′ ) using a perturbation method
as follows.

A ¼ Aþ A′

Since the mean bias of the model can easily be removed by using observation and model climatologies [Kug
et al., 2008c; Ahn et al., 2012], the MME strategy is applied only to A′, the perturbation part.

2.2. Method
2.2.1. Simple Composite Method (SCM)
SCM is a widely used and effective method for MME [e.g., Palmer et al., 2004; Wang et al., 2009; Min et al.,
2014]. The SCM equation is as follows:

Yt ¼ 1
N

XN
i¼1

A′
i;t

where A′i;t is the hindcast anomaly, t the time, and N the total number of input data. This method, which
imposes the same weight to each model, is applied to each grid point. The previous studies demonstrated
that some deterministic ensemble methods and probabilistic ensemble methods can have superior perfor-
mance to SCM [e.g., Kug et al., 2008b; Suh et al., 2012; Oh and Suh, 2016]. Nevertheless, if all the input data
have similar and reasonable performances, SCM generally outperforms other MME methods [e.g., Kug et al.,
2008b; Min et al., 2014]. Min et al. [2014] have shown that SCM generally outperforms multiple regression-
based weighted MME methods for all variables and seasons in APCC data. Therefore, in this study, we
selected SCM, a simple and effective MME method, to compare with newly developed MME methods.
2.2.2. Genetic Algorithm (GA)
GA is a nonlinear optimization method based on the biological evolution to find a true value by mimicking
the process of evolution in natural genetics [e.g.,Holland, 1975]. A key concept of GA is the introduction of
a chromosome that consists of genes in the process. A population is made of multiple chromosomes, and
a generation is a process of evolving from one population to the next through the parent chromosome pro-
ducing offspring chromosomes. A fitness function, which determines whether each chromosome is suitable
to survive in the environment or not, is applied to this process. In GA, this fitness function sets the direction of
evolution according to the user’s configuration [Lee et al., 2006]. Operators used in the generation process of
the GA are selection, crossover, mutation, and replacement. The selection, which is a fundamental operation
in GA, is a process for selecting an outstanding chromosome preferentially. The crossover is a process of
passing the gene from parent chromosome to offspring chromosomes. The mutation is a process of muta-
tional genetic modification different from the simple genetic inheritance. The replacement is a process that
replaces the population to the next generation. This operator determines whether all of the population or
only the superior members are to be changed.

In this study, the GA is used for MME to find the optimal weight among the models and among the ensemble
members of each model. The GA package used in this experiment is PIKAIA 1.2 [Charbonneau, 2002]. The
MME results with GA are verified by using leave-one-out cross validation because the common period
(27 years, 1983–2005 and 2008–2011) of each model’s hindcast is too short to give a meaningful result [e.

Table 1. Description of Six CGCMs

Institute AGCM (Resolution) OGCM (Resolution) Ensemble Member Reference

PNU (Pusan National University) CCM3 (T42 L18) MOM3 (128 × 64 Gaussian grid L29) 5 Sun and Ahn [2011, 2014]

UH (University of Hawaii) ECHAM4 (T31 L19) UH Ocean (1° latitude × 2° longitude L2) 10 Fu and Wang [2004]

NCEP (National Centers for
Environmental Prediction)

GFS (T62 L64) MOM3 (1/3° latitude × 1° longitude L40) 15 Saha et al. [2006]

BMRC (Bureau of Meteorology
Research Center)

BAM3.0d (T47 L17) ACOM2 (72 × 144 grid points for the physics grid) 10 Zhong et al. [2005]

SNU (Seoul National University) SNU (T42 L21) MOM2.2 (1/3° latitude × 1° longitude L32) 6 Kug et al. [2008a]

APCC (Asia-Pacific Economic
Conference Climate Center)

CAM3 (T85 L26) POP1.3 (gx1v3) 5
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g.,Michaelsen, 1987; Barnston, 1994;
Jo and Ahn, 2014]. Therefore, the GA
is applied to each model data for
26 years (except for the target year
to forecast) to find the optimal
weight, which is applied to obtain
the final MME result of the target
year. Figure 1 shows the schematic
flowchart illustrating the process of
the GA algorithm. First, the hindcast
(26 years) of each model except the
target year data is given as the input
data of GA, and then an initial weight
of each model is randomly gener-
ated. After the weight has been
applied to the MME process, the
result is assessed by a fitness function
to check whether the optimal solu-
tion is obtained. If an optimal solu-
tion is not acquired, the algorithm
proceeds further repeatedly to the
next generation through operators
such as crossover, mutation, and

replacement until the optimal solution is attained. The fitness function used in this study is the minimum
root-mean-square error (RMSE) between observation and hindcast anomalies. RMSE, which is a simple and
effective fitness function, has been used by several previous studies [e.g., Lee et al., 2006; You et al., 2012].
RMSE is defined as follows:

RMSE ¼ 1
T

XT
j¼1

kj � Oj
� �2

kj ¼
XN
i¼1

A′i; j �wi

� �

where T and N are the total number of time and input data, respectively. A′
i;j is the hindcast anomaly of input

data, which is either each model or ensemble member of each model, and wi is the weight per grid for each
input data produced from GA. Oj is the observation, and kj is the MME anomaly, which is multiplied by the
weight (wi) obtained from each model through GA.

The weight (wi) for each model obtained from the GA is applied to the hindcast of target year (t) of each
model as follows:

W ¼
XN
i¼1

wi

nwi ¼ wi

W

Yt ¼
XN
i¼1

A′i;t � nwi

where t is a target year and W the sum of all the weights (wi). nwi, which has a value less than 1, is the
final weight of each input data. Yt is the final MME result for the target year to which the final weight is
applied. The final weight (nwi) is normalized with respect to total number of input data (N), and it represents
the weight of each input data as a ratio.

Figure 1. Flowchart of genetic algorithm process.
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3. Experimental Design

In this study, threeMME experiments are designed to find the optimalMMEmethod using GA and the experimen-
tal results for the boreal winter prediction are compared to those of SCM, the conventional method commonly
used in MME (Figure 2). Applying a statistical method to the ensemble members of each model is referred to
as a single-model ensemble (SME), and applying a statistical method to the SME results is referred to as an ESME.

The MME strategy 0 (MS0), a conventional method, applies SCM to both SME and ESME, and the result is used
for comparison with other results obtained after GA application (Figure 2). The MME strategy 1 (MS1) is the
one that obtains MME by applying SCM to the ensemble members of eachmodel and then applies GA to that
result. Because MS1 uses SCM, which gives the same weight to the input data, the predictability of the model
can be reduced (particularly in the case of a large performance difference between the ensemble members).
Moreover, there is a limit in finding the weight using the optimal fitness on each grid because the ensemble
members of each model use the already-averaged result when applying GA. Thus, the performance of the
final result can be inferior to that of the SMEmember which has the best performance. The secondMME strat-
egy (MS2) applies GA to SME and carries out SCM to ESME. This solves the problems of SME, but a limitation
remains in improving the predictability because SCM is still included in the ESME process as in MS1. The third
MME strategy (MS3) applies GA to both SME and ESME. This method not only benefits from an expansion of
the searching space for finding the optimal weight but also compensates for the disadvantage of SCM which
is lowering the predictability in the case of a large difference in the performances of the ensemble members.
The results of SCM and GA methods used in the MME strategies are compared to each other for the predic-
tion of the boreal winter SAT and precipitation over the period of 27 years (from 1983 to 2005 and from 2008
to 2011) on a global domain using ensemble members of six models developed by six institutions.

4. MME Strategy Performance Validation for New Techniques

The boreal winter (DJF) prediction of SAT and precipitation has been lead averaged for 1–3months and
analyzed from various perspectives because the model performance is assessed differently depending on
analysis methods used to obtain skill scores [Hagedorn et al., 2005]. The skill score is analyzed using the com-
mon deterministic analysis, as recommended by World Meteorological Organization, such as Temporal
Correlation Coefficient (TCC), RMSE, Pattern Correlation Coefficient (PCC), and Normalized Standard
Deviation (NSTD) and using the categorical deterministic analysis such as hit rate (HR) and false alarm rate
(FAR) [Wilks, 1995]. For convenience, the six single models listed in Table 1 are arbitrarily referred to as SMs
from SM1 to SM6 in order of model in Table 1.

Figure 3a shows TCCs of MS0, MS1, MS2, and MS3 compared with results from the six SMs. Overall, for
SAT and precipitation, the methods that use the MME strategy show higher TCCs than SMs. The MME strate-
gies using GA (hereafter, MME/GAs indicate MS1, MS2, and MS3) have higher TCCs than MS0, and among
MME/GAs, MS3 produces the highest TCC. MS1 has a similar but slightly higher TCC than MS2.

Figure 2. Description of the MS0, MS1, MS2, and MS3 methods.
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Quantitatively, for SAT, MS1, MS2, and MS3 have TCCs of 0.45, 0.43, and 0.50, respectively, which are larger
compared to those of SMs (about 0.26 on the average). All MME/GAs show significant correlations at more
than 95% confidence level. MS3 shows a TCC increment of 0.16 compared to SM2, having the highest TCC
among SMs, which has TCC exceeding more than 99% confidence level. MS0 has a TCC of 0.37, which is
higher than anyone of SMs but lower than those of the other MME/GAs.

For precipitation (Figure 3b), SMs have a very low correlation coefficient of 0.13 on average, implying that the
model predictability for precipitation is basically quite low compared to SAT. TCCs of MS0, MS1, MS2, andMS3
are 0.21, 0.30, 0.30, and 0.36, respectively. First of all, MS0 shows a higher value than any SMs. Krishnamurti
et al. [1999, 2000], Kharin and Zwiers [2002], and Min et al. [2014] demonstrated the superior performance
of SCM MME (MS0) prediction compared to the performance of each SM. Hagedorn et al. [2005] also showed
that MME reduces the large amount of error compared to SM, in general. Our result corresponds with outputs
of their studies. However, TCC of MS0 is lower than that of the other MSs using MME/GA. Compared to MS1
and MS2, even though the same GA is used, MS3 (which utilizes most of the characteristics of ensemble
members and the weight by grid) shows a higher predictability for precipitation as well as SAT, with the
confidence level of more than 90%. Unlike SAT, all of MME/GA results are below the 95% level of confidence
for precipitation, although there are large increases in TCC compared to SMs.

Figures 3c and 3d show the RMSEs of SMs, MS0, MS1, MS2, and MS3. The results of RMSE are consistent with
those of TCC. That is, the ensemble-averaged SM has the highest value, followed by MS0, MS2, MS1, and MS3.
For SAT, the RMSEs of the SM average, MS0, MS1, MS2, and MS3, are 0.77°C, 0.66°C, 0.63°C, 0.63°C, and 0.61°C,
respectively. The RMSE of MS3 is 0.16°C less than that of the SM average. The RMSEs for precipitation are
0.66mm/d, 0.54mm/d, 0.53mm/d, 0.53mm/d, and 0.52mm/d for the SM average, MS0, MS1, MS2, and
MS3, respectively. The RMSE of MS3 is about 0.14mm/d less than that of SMs.

Figure 3. Global averages of (a and b) temporal correlation coefficient and (c and d) root-mean-square error of MMEs for
SAT and precipitation compared with those of six single models (SMs).
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Figure 4 shows the TCC spatial distribution of SATs for MS0, MS1, MS2, and MS3 (Figures 4a–4d, respectively)
and the spatial distribution of difference between MS0 and three GA methods (Figures 4e, 4f, and 4g). The
numbers on the upper right of each figure represent the area-averaged TCC. MS0 has always a higher predict-
ability than SMs but a lower predictability than MME/GAs. The predictability of MS1, MS2, and MS3 shows a
greater improvement than that of MS0, increasing by 18.9%, 16.2%, and 35.1%, respectively. MS3 shows the
greatest improvement in predictability, particularly in higher-latitude land areas where TCC is relatively low
(Figure 4a). The predictability over the land area is improved to a greater extent because GA is more efficient
in finding an optimum solution in a complex region where nonlinear physical properties are more possible.

Figure 4. Temporal correlation coefficient of SAT over the global area for DJF. (a–d) TCC and (e–g) the difference between
the MS0 and other methods. The colored area of TCC is significantly higher at the 90% confidence level. The numbers
on the upper right of each figure represent the area-averaged TCC.
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This is because the GA method generates the optimal solution for a given problem using nonlinear functions
such as inheritance, mutation, and selection [e.g.,Nasseri et al., 2008; Tabassum and Mathew, 2014].

Precipitation, the end product of atmospheric physical moisture processes, is a highly nonlinear property, and
thus, it has a lower predictability than other atmospheric variables such as SAT. With linear SCM methods,
precipitation is generally well predicted only around the equator (Figure 5). However, GA, which is a nonlinear
method, shows a great improvement at high latitudes where the predictability is low (as that of SAT). For
precipitation, the predictabilities of MS1, MS2, and MS3 show greater improvement than MS0 does,

Figure 5. Temporal correlation coefficient of precipitation over the global area for DJF. (a–d) TCC and (e–g) the difference
between the MS0 and other methods. The colored area of TCC is significantly higher at the 90% confidence level. The
numbers on the upper right of each figure represent the area-averaged TCC.
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increasing from 0.21 to 0.30, 0.30, and 0.36 (corresponding to 42.8%, 42.8%, and 71.4% increases), respec-
tively. In particular, MS3 also shows the greatest improvement in predictability for precipitation among all
three GA methods.

The zonally averaged (0°–360°E) TCC between observation and theMSs (MS0~ 3), and six single models (SMs)
for the SAT and precipitation with respect to latitude, are drawn in Figure 6. For both SAT and precipitation, as
seen in Figures 3, 5, and 6, TCCs of MS0 are higher than those of SMs [Hagedorn et al., 2005] and TCCs of
MME/GAs are generally higher than those of MS0 at all latitudes. Among the MME/GAs, MS3 shows the
highest TCC.

For SAT (Figure 6a), TCCs of MS0 are higher than those of SMs but lower than those of MME/GAs. MS3 has the
best performance among the MME/GAs, followed by MS1 and MS2. TCCs are higher around the equator and
lower in the higher latitudes. Particularly, to the south of around 60°S, TCCs of the MME/GAs even have oppo-
site sign. This indicates that the improvement of predictability using the MME/GA methods can be limited by
the performance of individual models. That is, the predictabilities of the MME/GA methods are limited where
SMs exhibit poor performances. Kug et al. [2008b] andMin et al. [2014] also mentioned that the performances
of the MME methods depend on those of the individual model.

Comparing Figure 6b with Figure 6a, TCCs of precipitation are lower than those of SAT, in general, because of
the lower performance of SMs. TCCs of MS0 are higher than those of SMs, which corresponds with previous
study finding. MME/GAs have higher predictabilities than SMs and MS0 for both variables, and especially,
MS3 shows the most improved performance among MME/GAs throughout the latitudes. Unlike the case of
SAT, the TCCs of MSs for precipitation are higher than SMs. This is because although the TCCs of each SM
for precipitation are relatively low compared to SAT, they are not as extremely poor as SAT in the latitudes
south of 60°S.

From this analysis, we find that the improvement in predictability relies on the performance of each
individual SM. The improvement in the predictability of MMEs is large where SMs show relatively poor per-
formances but small where SMs exhibit good performances. However, where the predictabilities of
SMs are extremely poor, as in Figure 6a (south of 60°S), a large improvement of predictability utilizing
MME/GAs was not expected. In general, relationship between the observation and model output obtained
from the training period is applied to the predictive period in statistical method under a stationarity assump-
tion. Such assumption implicitly used for the nonlinear as well as linear MME methods, which is a fundamen-
tal limitation of statistical method, may be one of the possible causes for the abnormal results sometimes

Figure 6. Zonally averaged (0°–360°E) temporal correlation coefficients for the MS0, MS1, MS2, MS3, and six single models
(SMs) for SAT and precipitation at each latitude.
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obtained in the high latitudes or specific years (e.g., 2004 in Figure 7). It is particularly plausible when one of
the ensemble members has abnormally poor predictive skill at specific regions and periods.

Figure 7 presents the PCCs and RMSEs of SMs, MS0, MS1, MS2, and MS3 in a time series. The noncolored
squares represent SMs, colored squares MS0, and circle, triangle, and diamond denote MS1, MS2, and MS3,
respectively. For SAT, the MME/GAs show a better pattern correlation than SMs and MS0 in most years,
and MS3 in particular shows the highest values. The RMSEs of MME/GAs are lower than those of SMs and
MS0 as shown in Figure 7b. However, the PCCs of SAT for the MME methods (MS0, MS1, MS2, and MS3) in
2004 are even lower than those of SMs because one model generates a result with poor performance, as
shown in Figure 7b. These results reveal that the performances of the MME methods are influenced by those
of input data. Except for 2004, the overall predictabilities of the MME methods are better than those of the
SMs. This is evident in Figure 8, where the total period mean of the PCC is shown along with RMSE. The
decrease of RMSE and the increase of the averaged PCC are evident in MME/GAs, and MS3 shows the best
predictability for SAT. MS0 shows lower RMSE than SMs. The MME/GAs also have higher spatial pattern cor-
relations and lower RMSEs for precipitations than do the SMs and MS0. The PCC-RMSE diagram also shows
that MME/GAs have a higher predictability than the SMs do. The PCCs in precipitation are generally higher
than those of SAT in Figures 7 and 8 because the variance of global precipitation anomaly is generally con-
centrated at the equator and the overall characteristic of the anomaly spatial distribution of precipitation is
more easily captured by models compared to SAT. However, it should be noted that the temporal variance of
precipitation is lower than that of SAT (e.g., Figure 3).

Figure 9 presents Taylor diagrams for SMs and MME strategies which is drawn in order to investigate var-
iations in SAT and precipitation. The Taylor diagram is a tool that compares similarities of patterns between
the model and the observation by obtaining nondimensional parameters of NSTD and TCC. For SAT, results
of MS0 and MME/GAs have significant correlations at the 95% confidence level. MS3 shows a significant
correlation at more than 99% confidence level. The variation in MME strategy generally decreases in
comparison with SM results. Furthermore, among MME strategies, GA methods show variations that are
more similar to observations than variations of MS0. For precipitation, MS0 has a higher correlation with
the observation than SMs, and MME/GAs show a higher correlation than MS0. According to previous
PCC-RMSE and Taylor diagrams, the MME/GAs construct spatial and temporal patterns of SAT and precipi-
tation better than SMs, and among MME/GAs, MS3 shows the highest predictability. MS1 and MS2 are

Figure 7. Time series of anomaly pattern correlation coefficients and root-mean-square error (RMSE) for the MS0, MS1,
MS2, MS3, and six single models (SMs) for the global mean SAT and precipitation.
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similar to each other in terms of the predictability, but MS1 has a better output for the TCC of SAT and MS2
for the PCC of precipitation.

Figure 10 shows a diagram of HR and FAR, which exhibits the categorical predictability for boreal winter SAT
and precipitation anomalies. HR and FAR are obtained by classifying the given values into three categories:
larger than + 0.53σ(+), smaller than � 0.53σ(�), and between + 0.53σ and � 0.53σ(0) where, σ means the
standard deviation of each MME result [e.g.,Wilks, 1995; Jo and Ahn, 2014]. In Figure 10, the upper left corner
of the chart indicates a perfect forecast and the reference line (diagonal line) a zero-skill forecast. MS1, MS2,
and MS3 show improved skills overall compared to SMs and MS0 as their positions move toward the
upper left corner of the chart by increasing HR and decreasing FAR for both SAT and precipitation. Again,
MS3 provides the greatest skill among the MME/GAs, while MS2 and MS1 show no significant differences.

Figure 9. Taylor diagram of MS0, MS1, MS2, MS3, and six single models (SMs) for the global mean (a) SAT and
(b) precipitation.

Figure 8. Anomalous PCC-RMSE diagram of MS0, MS1, MS2, MS3, and six single models (SMs) for the global mean (a) SAT
and (b) precipitation.
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Figure 10. Hit rate (HR) and false alarm rate (FAR) diagrams of MS0, MS1, MS2, MS3, and six single models (SMs) for the
global mean (a) SAT and (b) precipitation.

Figure 11. Global averaged differences between the maximum and minimum ensemble number experiments (a and b)
temporal correlation coefficient and (c and d) root-mean-square error for SAT and precipitation comparing MMEs
with those of the six single models (SMs).
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Since the predictabilities of the MME methods can be changed by the number of ensemble members and
training periods [e.g.,Oh and Suh, 2016], sensitive tests for the number and period are conducted on
MME/GAs. To examine the changes in performance in relation to the number of ensemble members, first,
the MMEmethods are applied additionally to five-ensemble member, which is theminimummember among
the models. Since the whole number of ensemble members for the two models (SM1 and SM6) are only 5,
additional experiment for sensitivity test for the models is not performed. Figure 11 presents the differences
of TCC and RMSE between the ensemble experiments with maximum (all ensemble members used) and
minimum (five ensemble members used) ensemble members for SAT and precipitation. TCCs (RMSEs) of
SMs increase (decrease) as the number of ensemble members increases for both variables. The predictability
of eachMMEmethod is also changed as the number of ensemble changes. The results show that the changes
of TCCs and RMSEs are generally smaller than those of SMs. This means that the MME methods are less
dependent on and sensitive to the number of ensemble members compared to SMs.

To test the sensitivity of the MME methods in relation to the training period, RMSEs for boreal winter (DJF) of
2011 are examined by changing the training period from 5 to 27 years (Figure 12). The dotted and solid lines
are the average of SMs (AVG_SMs) and MS0, respectively. Both SAT and precipitation show a decrease of
RMSE as the training period increases. For SAT, MS1 exhibits better performance than AVG_SMs do if the train-
ing period is longer than 8 years. Precipitation shows better performance than AVG_SMs in all training periods,
indicating that MME/GAs have superior performance in precipitation to SMs regardless of the training periods.
In addition, RMSEs of MME/GAs are lower compared to MS0 when training periods are longer than 26 years.

5. Discussion and Conclusion

MME/GAs, which are nonlinear MME strategies capable of reflecting chaotic characteristics of the atmo-
sphere, are developed as new MME methods to improve the seasonal predictability. The success of the pro-
posed MME strategy is attributable to GA’s AI technology, which determines the optimum solution flexibly
and efficiently in a complex searching space with a large nonlinear property.

The winter SAT and precipitation predicted from ensemble members of six CGCMs participating in the APCC
long-range MME prediction system are used. To optimize the MME strategy, the following three MME/GAs
strategies are analyzed in comparison with the simple SCM MME strategy (MS0): MS1 which applies GA to
SMEs, MS2 which applies GA to each ensemble member and then performs SCM for MME, and MS3 which
applies GA to both MME and SME.

Figure 12. Root-mean-square error (RMSE) of MS1 in DJF of 2011 as a function of training period for global mean (a) SAT
and (b) precipitation. The black and dashed lines denote the RMSEs of MS0 and averaged value of six single models
(SMs), respectively.
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Compared to SMs and MS0, our results demonstrate that MME/GAs have a higher TCC and a lower RMSE
for both SAT and precipitation. That is, for temperature, TCC of MS1, MS2, and MS3 shows an improvement
than that of MS0, increasing from 0.37 of MS0 to 0.45, 0.43, and 0.50 (corresponding to 18.9%, 16.2%, and
35.1% increases), respectively. TCC for precipitation of MS1, MS2, and MS3 also increases from 0.21 to 0.30,
0.30, and 0.36 (corresponding to 42.8%, 42.8%, and 71.4% increases compared to that of MS0), respectively.
PCC-RMSE and Taylor diagram analyses also corroborate these results. In addition, the MME/GAs show the
superior forecast accuracy for both SAT and precipitation even in the categorical deterministic analysis, as
the increase of HR and the decrease of FAR are noted globally. This indicates that MME/GAs improve the
predictability by offsetting the bias of the poorly performing model with that of the skillful model
[Hagedorn et al., 2005]. In addition, MS3, which uses GA for both SME and MME, exhibits the greatest predict-
ability for both SAT and precipitation compared to MS1 and MS2. The improvement in the predictabilities of
MME/GAs is large where SMs exhibit relatively poor performances but small where SMs show good perfor-
mances. However, a large improvement of predictabilities utilizing both MME/GAs and MS0 was not
expected where the predictabilities of SMs are extremely poor as in Figure 6a (south of 60°S). It demonstrates
that if the performances of individual models are extremely poor, the improvement of predictability using the
MME methods can be limited.

TCCs (RMSEs) of SMs increase (decrease) as the number of ensemble member increases for both variables.
The predictability of each MME method is also changed as the number of ensemble changes. However,
the MME/GAs have superior performance and are less dependent on and sensitive to the number of ensem-
ble members compared to SMs. Both SAT and precipitation exhibit a decrease of RMSE as the training period
increases. For SAT, RMSEs of MS1 are lower compared to SMs if the training period is longer than 8 years.
Precipitation shows better performance than SMs regardless of the training period. In addition, MME/GAs
have superior performance to MS0 when training periods are longer than 26 years.

Our results show that MME/GAs can improve the predictability compared to SMs and MS0. This improvement
is also dependent on how the GA method is applied. MS3, which uses the GA method to each model’s
ensemble members and each model, provides the highest predictability, compared to MS1 and MS2 (includ-
ing SCM). MS2 and MS1, however, show no statistically significant difference. These results imply that
biases of ensemble members of each model and model ensemble are reduced more with MS3 than with
other MME/GAs.

The predictability of MME/GAmethods shows a greater improvement than that of MS0, particularly in higher-
latitude land areas. The reason for the more improved increase of predictability over the land area, particu-
larly in MS3, seems to be the fact that GA is more efficient in finding an optimum solution in a complex region
where nonlinear physical properties are more possible. Although MS3 has been applied to boreal winter SAT
and precipitation in this study, the method is expected to be used effectively for any variables and seasons.

References
Ahn, J. B., J. L. Lee, and E. S. Im (2012), The reproducibility of surface air temperature over South Korea using dynamical downscaling and

statistical correction, J. Meteorol. Soc. Jpn., 90(4), 493–507.
Barnston, A. G. (1994), Linear statistical short-term climate predictive skill in the Northern Hemisphere, J. Clim., 7, 1513–1564.
Charbonneau, P. (2002), An introduction to genetic algorithms for numerical optimization, NCAR Tech. Note TN-450 IA, 74pp.
Charbonneau, P., and B. Knapp (1995), A user’s guide to PIKAIA 1.0, NCAR Tech. Note 418+lA, 121pp.
Choi, S. S., H. K. Koo, and Y. K. Kim (2000), Predicting stock prices using book values and earnings-per-share based on linear regression model

and neural network model, Kor. J. Financ. Man., 17, 161–180.
Coulibaly, P. (2004), Downscaling daily extreme temperatures with genetic programming, Geophys. Res. Lett., 31, L16203, doi:10.1029/

2004GL020075.
Fraedrich, K., and N. R. Smith (1989), Combining predictive schemes in long-range forecasting, J. Clim., 2, 291–294.
Fritsch, J. M., J. Hilliker, J. Ross, and R. L. Vislocky (2000), Model consensus, Weather Forecasting, 15, 571–582.
Fu, X., and B. Wang (2004), The boreal-summer intraseasonal oscillations simulated in a hybrid coupled atmosphere-ocean model,

Mon. Weather Rev., 132, 2628–2649.
Hagedorn, R., F. J. Doblas-Reyes, and T. N. Palmer (2005), The rationale behind the success of multi-model ensembles in seasonal

forecasting—I. Basic concept, Tellus A, 57, 219–233.
Holland, J. H. (1975), Adaption in Natural and Artificial Systems, 228 pp., Univ. Michigan Press, Ann Arbor.
Houtekamer, P. L., and J. Derome (1995), Methods for ensemble prediction, Mon. Weather Rev., 123(7), 2181–2196.
Huffman, G. J., R. F. Adler, P. Arkin, A. Chang, R. Ferraro, A. Gruber, J. Janowiak, A. McNab, B. Rudolf, and U. Schneider (1997), The Global

Precipitation Climatology Project (GPCP) combined precipitation dataset, Bull. Am. Meteorol. Soc., 78, 5–20.
Intergovernmental Panel on Climate Change (IPCC) (1996), Climate Change 1995—The Science of Climate Change, Contribution of Working

Group I to the Second Assessment Report of the IPCC, Cambridge Univ. Press, New York.

Journal of Geophysical Research: Atmospheres 10.1002/2016JD025151

AHN AND LEE A NEW MME METHOD USING GA 14

Acknowledgments
This work was carried out with the
support of the Rural Development
Administration Cooperative Research
Program for Agriculture Science and
Technology Development under grant
project PJ009953 and the Korea
Meteorological Administration Research
and Development Program under grant
KMIPA 2015-2081, Republic of Korea.
The APCC model data were obtained
from http://cis.apcc21.org/opendap/
INDV_MODEL/3-MON/.

http://dx.doi.org/10.1029/2004GL020075
http://dx.doi.org/10.1029/2004GL020075
http://cis.apcc21.org/opendap/INDV_MODEL/3-MON/
http://cis.apcc21.org/opendap/INDV_MODEL/3-MON/


Intergovernmental Panel on Climate Change (IPCC) (2007), Climate Change 2007—The Physical Science Basis, Contribution of Working Group I
to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., pp. 793–795, Cambridge
Univ. Press, Cambridge, U. K., and New York.

Jo, S., and J. B. Ahn (2014), Improvement of CGCM prediction for wet season precipitation over Maritime Continent using a bias correction
method, Int. J. Climatol., 35(13), 3721–3732.

Kalnay, E., and M. Ham (1989), Forecasting forecast skill in the Southern Hemisphere, Preprints of the 3rd International Conference on
Southern Hemisphere Meteorology and Oceanography, Buenos Aires, 1989, 24–27pp.

Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter (2002), NCEP-DEO AMIP-II Reanalysis (R-2), Bull. Am.
Meteorol. Soc., 83, 1631–1643.

Kharin, V. V., and F. W. Zwiers (2002), Climate prediction with multimodel ensembles, J. Clim., 15, 793–799.
Kharin, V. V., F. W. Zwiers, and N. Gagnon (2001), Skill of seasonal hindcasts as a function of the ensemble size, Clim. Dyn., 17, 835–843.
Krishnamurti, T. N., C. M. Kishtawal, T. E. LaRow, D. R. Bachiochi, Z. Zhang, C. E. Willifor, S. Gadgil, and S. Surendran (1999), Improved weather

and seasonal climate forecasts from multi model superensemble, Science, 285, 1548–1550.
Krishnamurti, T. N., C. M. Kishtawal, Z. Zhang, T. E. LaRow, D. R. Bachiochi, C. E. Williford, S. Gadgil, and S. Surendran (2000), Multi-model

ensemble forecasts for weather and seasonal climate, J. Clim., 13, 4196–4216.
Kug, J. S., I. S. Kang, and D. H. Choi (2008a), Seasonal climate predictability with tier-one and tier-two prediction system, Clim. Dyn., 31,

403–416.
Kug, J. S., J. Y. Lee, I. S. Kang, B. Wang, and C. K. Park (2008b), Optimal multi-model ensemble method in seasonal climate prediction, J. Kor.

Meteor. Soc., 44, 259–267.
Kug, J. S., J. Y. Lee, and I. S. Kang (2008c), Systematic error correction of dynamical seasonal prediction of sea surface temperature using a

stepwise pattern project method, Mon. Weather Rev., 136, 3501–3512.
Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross (1995), Improvements in the GFDL hurricane prediction system, Mon. Weather Rev.,

123(9), 2791–2801.
Lee, Y. H., S. K. Park, and D. E. Chang (2006), Parameter estimation using the genetic algorithm and its impact on quantitative precipitation

forecast, Ann. Geophys., 24, 3185–3189.
Lu, C., H. Yuan, B. E. Schwartz, and S. G. Benjamin (2007), Short-range numerical weather prediction using time-lagged ensembles,

Weather Forecasting, 22(3), 580–595.
Michaelsen, J. (1987), Cross-validation in statistical climate forecast models, J. Climate Appl. Meteorol., 26(11), 1589–1600.
Min, Y. M., V. N. Kryjov, and S. M. Oh (2014), Assessment of APCC multimodel ensemble prediction in seasonal climate forecasting:

Retrospective (1983–2003) and real-time forecasts (2008–2013), J. Geophys. Res. Atmos., 119, 12,132–12,150, doi:10.1002/2014JD022230.
Nasseri, M., K. Asghari, and M. J. Abedini (2008), Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial

neural network, Expert Syst. Appl., 35, 1415–1421.
Oh, S.-G., and M.-S. Suh (2016), Comparison of projection skills of deterministic ensemble methods using pseudosimulation data generated

from multivariate Gaussian distribution, Theor. Appl. Climatol., 1–20, doi:10.1007/s00704-016-1782-1.
Palmer, T. N., A. Alessandri, U. Andersen, P. Cantelaube, M. Davey, P. Délécluse, andM. Déqué (2004), Development of a European Multimodel

Ensemble System for Seasonal-to-Interannual Prediction (DEMETER), Bull. Am. Meteorol. Soc., 85(6), 853–872.
Park, S. H., S. D. Kang, and W. T. Kwon (2005), Prediction of boreal winter precipitation by nonlinear multimodel ensemble technique, J. Kor.

Meteor. Soc., 41, 1015–1028.
Peng, P., A. Kumar, H. Van den Dool, and A. G. Barnston (2002), An analysis of multimodel ensemble predictions for seasonal climate

anomalies, J. Geophys. Res., 107(D23), 4710, doi:10.1029/2002JD002712.
Saha, S., S. Nadiga, C. Thiaw, J. Wang, and W. Wang (2006), The NCEP climate forecast system, J. Clim., 19, 3483–3517.
Stensrud, D. J., H. E. Brooks, J. Dun, M. S. Tracton, and E. Rogers (1999), Using ensembles for short-range forecasting, Mon. Weather Rev.,

127(4), 433–446.
Stensrud, D. J., J. W. Bao, and T. T. Warner (2000), Using initial condition and model physics perturbations in short-range ensemble

simulations of mesoscale convective systems, Mon. Weather Rev., 128(7), 2077–2107.
Suh, M. S., S. G. Oh, D. K. Lee, D. H. Cha, S. J. Choi, C. S. Jin, and S. Y. Hong (2012), Development of new ensemble methods based on the

performance skills of regional climate models over South Korea, J. Clim., 25(20), 7067–7082.
Sun, J., and J. B. Ahn (2011), A GCM-based forecasting model for the landfall of tropical cyclones in China, Adv. Atmos. Sci., 28, 1049–1055.
Sun, J., and J. B. Ahn (2014), Dynamical seasonal predictability of the arctic oscillation using a CGCM, Int. J. Climatol., 35(7), 1342–1353.
Tabassum, M., and K. Mathew (2014), A genetic algorithm analysis towards optimization solutions, Int. J. Digit. Inf. Wirel. Commun., 4(1),

124–142.
Van den Dool, H. M., and L. Rukhovets (1994), On the weights for an ensemble-averaged 6–10 day forecast,Weather Forecasting, 9(3), 457–465.
Wang, B., et al. (2009), Advance and prospectus of seasonal prediction: Assessment of the APCC/CliPAS 14-model ensemble retrospective

seasonal prediction (1980–2004), Clim. Dyn., 33, 93–117, doi:10.1007/s00382-008-0460-0.
Wilks, D. S. (1995), Statistical Methods in the Atmospheric Sciences, 467 pp., Academic Press, New York.
You, S. H., Y. H. Lee, and W. J. Lee (2012), Parameter estimations of a storm surge model using a genetic algorithm, Nat. Hazards, 60(3),

1157–1165.
Yun, W. T., and T. N. Krishnamurti (2002), Linear and non-linear multi-model superensemble prediction model, J. Kor. Meteor. Soc., 12, 26–31.
Yun, W. T., L. Stefanova, and T. N. Krishnamurti (2003), Improvement of the superensemble technique for seasonal forecasts, J. Clim., 16,

3834–3840.
Yun, W. T., W. S. Lee, and T. N. Krishnamurti (2005), Seasonal prediction of precipitation using multi-model synthetic superensemble

algorithm, J. Kor. Meteor. Soc., 41, 159–172.
Yuval, and W. W. Hsieh (2003), An adaptive nonlinear MOS scheme for precipitation forecasts using neural networks, Weather Forecasting,

18(2), 303–310.
Zhong, A., H. H. Hendon, and O. Alves (2005), Indian Ocean variability and its association with ENSO in a global coupled model, J. Clim., 18,

3634–3649.

Journal of Geophysical Research: Atmospheres 10.1002/2016JD025151

AHN AND LEE A NEW MME METHOD USING GA 15

http://dx.doi.org/10.1002/2014JD022230
http://dx.doi.org/10.1007/s00704-016-1782-1
http://dx.doi.org/10.1029/2002JD002712
http://dx.doi.org/10.1007/s00382-008-0460-0


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


